Binary Phase Diagrams - Solid Solution Behavior

1. On the first diagram, outline the liquidus in green, the solidus in brown.
2. Trace the behavior of the melt at A as it cools from 1800°C to 1400°C. Show the path follows
by the liquid in <u>red</u> , and by the solid in <u>blue</u> on the first attached diagram.
At what temperature do the first crystals appear? 1650°C
What is the composition of the first crystals? <u>Fo</u> ₈₆ At what temperature is the
liquid entirely converted to the solid? 1390°C
What is the composition of the final liquid phase? Fo ₁₆
What is the composition of the liquid phase at 1500°C? Fo ₂₉
What is the composition of the solid at 1500°C? <u>Fo_65</u>
3. On the second diagram trace the behavior of composition B as it is heated from 1200°C to
1800°C. Again, show the path followed by the solid in <u>blue</u> and the path followed by the liquid in
<u>red</u> .
At what temperature does the first liquid appear? 1310°C
What is the composition of the liquid at this temperature? Fo ₀₇
What is the composition of the solid at this temperature? <u>Fo</u> ₂₆
At what temperature does the last solid disappear? <u>1480°C</u>
What is the composition of the last solid? <u>Fo</u> ₆₃
What is the liquid composition at 1400°C? Fo ₁₈
What is the liquid composition at 1450°C? <u>Fo₂₃</u>
What is the solid composition at 1450°C? <u>Fo</u> ₅₈
Grading - 1 point for each colored line 1 point per blank $\pm 20^{\circ}$ C and $\pm 4\%$ composition $\pm 40^{\circ}$ C and $\pm 8\%$ composition, -½ point
Total - 20 points
4200hw5_key_F12.wpd

October 26, 2012

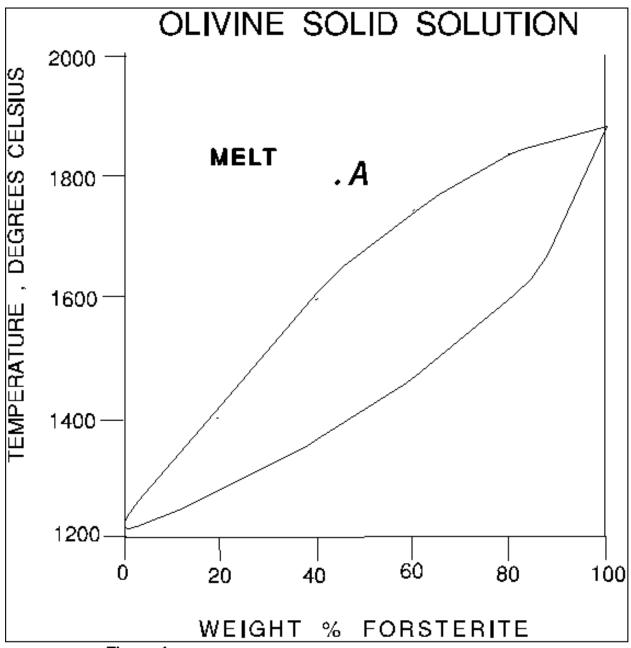


Figure 1

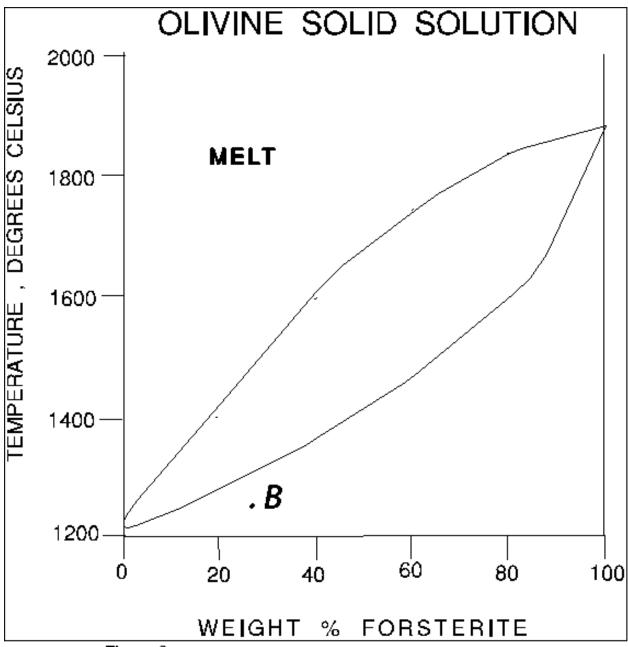


Figure 2